Rocket Academy Bootcamp
  • 🚀Welcome to Bootcamp!
  • 🛠️Logistics
    • Course Schedules
    • Course Methodology
    • Required Software
    • LinkedIn Education Badge
  • 📚General Reference
    • Naming, Casing, and Commenting Conventions
    • VS Code Tips
    • Recommended Resources
  • 🪨0: Foundations
    • 0.1: Command Line
    • 0.2: Git
      • 0.2.1: Branches
    • 0.3: GitHub
      • 0.3.1: Pull Requests
    • 0.4: JavaScript
      • 0.4.1: ES6
      • 0.4.2: Common Syntax
      • 0.4.3: Reference vs Value
      • 0.4.4: Classes
      • 0.4.5: Destructuring and Spread Operator
      • 0.4.6: Promises
        • 0.4.6.1: Async Await
    • 0.5: Node.js
      • 0.5.1: Node Modules
      • 0.5.2: NPM
      • 0.5.3: Nodemon
  • 🖼️1: Frontend
    • 1.1: HTML
    • 1.2: CSS
      • 1.2.1: Layout
    • 1.3: React
      • Styling in ReactJs
      • Using Styling Libraries with React
      • React Deployment
    • 1.E: Exercises
      • 1.E.1: Recipe Site
      • 1.E.2: Portfolio Page
      • 1.E.3: World Clock
      • 1.E.4: High Card
      • 1.E.5: Guess The Word
    • 1.P: Frontend App
  • 🏭2: Full Stack
    • 2.1: Internet 101
      • 2.1.1: Chrome DevTools Network Panel
      • 2.1.2: HTTP Requests and Responses
    • 2.2: Advanced React
      • 2.2.1: AJAX
      • 2.2.2: React Router
      • 2.2.3: useContext
      • 2.2.4: useReducer
      • 2.2.5: Environmental Variables
      • 2.2.6: React useMemo - useCallback
    • 2.3: Firebase
      • 2.3.1: Firebase Realtime Database
      • 2.3.2: Firebase Storage
      • 2.3.3: Firebase Authentication
      • 2.3.4: Firebase Hosting
      • 2.3.5: Firebase Techniques
    • 2.E: Exercises
      • 2.E.1: Weather App
      • 2.E.2: Instagram Chat
      • 2.E.3: Instagram Posts
      • 2.E.4: Instagram Auth
      • 2.E.5: Instagram Routes
    • 2.P: Full-Stack App (Firebase)
  • 🤖3: Backend
    • 3.1: Express.js
      • 3.1.1 : MVC
    • 3.2: SQL
      • 3.2.1: SQL 1-M Relationships
      • 3.2.2: SQL M-M Relationships
      • 3.2.3: SQL Schema Design
      • 3.2.4: Advanced SQL Concepts
      • 3.2.5: SQL - Express
      • 3.2.6: DBeaver
    • 3.3: Sequelize
      • 3.3.1: Sequelize One-To-Many (1-M) Relationships
      • 3.3.2: Sequelize Many-To-Many (M-M) Relationships
      • 3.3.3: Advanced Sequelize Concepts
      • 3.3.4 Database Design
    • 3.4: Authentication
      • 3.4.1: JWT App
    • 3.5: Application Deployment
    • 3.E: Exercises
      • 3.E.1: Bigfoot JSON
      • 3.E.2: Bigfoot SQL
      • 3.E.3: Bigfoot SQL 1-M
      • 3.E.4: Bigfoot SQL M-M
      • 3.E.5: Carousell Schema Design
      • 3.E.6: Carousell Auth
    • 3.P: Full-Stack App (Express)
  • 🏞️4: Capstone
    • 4.1: Testing
      • 4.1.1: Frontend React Testing
      • 4.1.2: Backend Expressjs Testing
    • 4.2: Continuous Integration
      • 4.2.1 Continuous Deployment (Fly.io)
      • 4.2.2: Circle Ci
    • 4.3: TypeScript
    • 4.4: Security
    • 4.5: ChatGPT for SWE
    • 4.6: Soft Skills for SWE
    • 4.P: Capstone
  • 🧮Algorithms
    • A.1: Data Structures
      • A.1.1: Arrays
        • A.1.1.1: Binary Search
        • A.1.1.2: Sliding Windows
      • A.1.2: Hash Tables
      • A.1.3: Stacks
      • A.1.4: Queues
      • A.1.5: Linked Lists
      • A.1.6: Trees
      • A.1.7: Graphs
      • A.1.8: Heaps
    • A.2: Complexity Analysis
    • A.3: Object-Oriented Programming
    • A.4: Recursion
    • A.5: Dynamic Programming
    • A.6: Bit Manipulation
    • A.7: Python
  • 💼Interview Prep
    • IP.1: Job Application Strategy
    • IP.2: Resume
    • IP.3: Portfolio
Powered by GitBook
On this page
  • Learning Objectives
  • Introduction
  • Exercises
  • Pre-Class
  • Part 1
  • Part 2
  • More Comfortable
  1. Algorithms
  2. A.1: Data Structures
  3. A.1.1: Arrays

A.1.1.2: Sliding Windows

PreviousA.1.1.1: Binary SearchNextA.1.2: Hash Tables

Learning Objectives

  1. Understand how to apply the sliding-window technique to solve relevant array problems

Introduction

The sliding-window technique allow us to iteratively analyse subarrays ("windows") of varying sizes in an array by storing and independently incrementing a start and end index of the current subarray. Read for an intuitive explanation.

Exercises

After attempting each problem, find solutions in the Leaderboard tab (HackerRank, may be on left side of page) or Solution or Discuss tabs (LeetCode) on that problem's page. If you get stuck for more than 15 minutes, review and understand the solutions and move on. Come back and re-attempt the problem after a few days.

Pre-Class

    1. Note: There is no need to attempt the O(n) solution for now. The O(n) solution requires math that may not be the most relevant to us while we are practising JavaScript.

    2. Hint: Would nested loops be helpful, an outer loop that determines the length of the subarray, and an inner loop that sums all subarrays of a given length?

Part 1

Part 2

    1. Hint: We may want to create a helper function that calculates the number of customers satisfied in a given day, given the specific days that the bookstore owner is not grumpy.

More Comfortable

    1. Hint: What determines the start and end of the sliding window?

    2. Hint: Do we need to track the indexes of 0s in the array?

Sum of All Odd-Length Subarrays ()

(Python)

Maximum Number of Vowels in a Substring of Given Length ()

Longest Turbulent Subarray ()

Longest Continuous Subarray with Absolute Difference Less Than or Equal to Limit ()

Grumpy Bookstore Owner ()

Max Consecutive Ones III ()

(Python)

(Python)

Longest Repeating Character Replacement ()

🧮
LeetCode
Rocket solution code
LeetCode
LeetCode
LeetCode
LeetCode
LeetCode
Rocket solution code
Rocket solution video
LeetCode
this Stack Overflow answer
Video introduction to sliding windows with examples
Longest Substring Without Repeating Characters, sliding window solution explained